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Introduction

A crucial focus of quantum complexity theory is to study quantum counterparts of
classical complexity classes. By comparing the classical and quantum complexity
classes, we better understand the power of quantum computation models. One
particular interesting quantum complexity class is Quantum Merlin-Arthur (QMA).
It is the quantum analog of Merlin-Arthur (MA), and it can also be seen as the
quantum equivalent of NP because of the close relationship between the canon-
ical NP-complete problem, SAT, and the natural QMA-complete problem, Local
Hamiltonian (LH). Surprisingly, Fefferman and Lin show that if we allow the confi-
dence and soundness gap of QMA to be inverse exponentially small, denoted as
PreciseQMA, we can characterize it precisely by PSPACE [2]. On the other hand,
we can upper bound MAexp with NPPP, which is contained in PSPACE.

The result PreciseQMA ⊆ PSPACE is more or less intuitive. Given a polyno-
mial size proof state and polynomial time verification algorithm, we can simulate
the protocol in polynomial space by guessing the proof and performing proper
amplification [2]. The reverse result PSPACE ⊆ PreciseQMA is more surpris-
ing. In Fefferman and Lin’s original proof, they first characterize PSPACE with
Gapped Succinct Matrix Singularity, a problem which they prove to be PSPACE-
hard, and then they solve it with a PreciseQMA protocol. From a abstract per-
spective, we can understand Gapped Succinct Matrix Singularity as encoding the
computation path of a PSPACE Turing Machine. This insight motivates us to di-
rectly encode the computation path with Hamiltonians using history state con-
struction by Kitaev, Shen, and Vyalyi in their proof that LH is QMA-complete [3]. In
our opinion, the direct encoding of the computation path and the close relationship
between Hamiltonian problems and QMA make the proof PSPACE ⊆ PreciseQMA
more intuitive.

Preliminaries

Definition 1. We say a promise problem L = (Lyes, Lno) is in (t, k)-bounded
QMAm(c, s) if there exists a uniform family of quantum circuits {Vx}x ∈ {0, 1}n,
each of size at most t(|x|), acting on k(|x|) + m(|x|) qubits, so that: If x ∈ Lyes
there exists an m-qubit state |ψ〉 such that:(

〈ψ| ⊗ 〈0k|
)

V†
x |1〉〈1|outVx

(
|ψ〉 ⊗ |0k〉

)
≥ c

Whereas for x ∈ Lno, for all m-qubit states |ψ〉:(
〈ψ| ⊗ 〈0k|

)
V†

x |1〉〈1|outVx
(
|ψ〉 ⊗ |0k〉

)
≤ s

Definition 2. PreciseQMA = (poly, poly)-bounded QMApoly(c, c− 2−poly)

Definition 3. PreciseQMAc=1 = (poly, poly)-bounded QMApoly(1, 1− 2−poly)
This is PreciseQMA with perfect completeness.

Theorem 4. For any ε > 0, any multitape Turing machine running in time T
and space S can be simulated by a reversible input-saving machine using time
O(T1+ε) and space O(S · log T). [1]
Corollary 5. PSPACE = revPSPACE
Corollary 6. If L ∈ PSPACE, L is recognized by a family of quantum circuits {Cn}
which run in exponential time and polynomial space in n.

Theorem 7. PreciseQMA ⊆ PSPACE [2]

Proof of PreciseQMA ⊇ PSPACE

Recall that the history state construction consists of a set of input-checking Hamiltonians,
output-checking Hamiltonians, and propagation-checking Hamiltonians. A clock register is
introduced to check a specific time step of the computation.
Lemma 8. If L is recognized by a family of quantum circuits {Cn} which run in exponential
time and polynomial space in n, then for all x ∈ {0, 1}n, there exists a Hamiltonian Hx such
that, if x ∈ L, minψ〈ψ|Hx|ψ〉 = 0, and if x /∈ L, minψ〈ψ|Hx|ψ〉 ≥ exp(−poly(n)).
Proof. The proof is inspired by the Quantum Cook-Levin theorem (KSV reduction) [3]. The
idea is to construct a Hamiltonian to check if the circuit has a valid history of computation.
Suppose the quantum circuit Cn that acts on S(n) qubits and consists of T(n) = epoly(n)

unitary two-qubit gates, U1, · · · , UT. We define

Hi
in = Π|¬xi〉

i ⊗ |0〉〈0|C

Hout = Π|0〉1 ⊗ |T〉〈T|C

Ht
prop =

1
2
(I ⊗ |t〉〈t|+ I ⊗ |t− 1〉〈t− 1| −Ut⊗ |t〉〈t− 1| −U†

t ⊗ |t− 1〉〈t|)

Hx =
n
∑
i=1

Hi
in + Hout +

T
∑
t=1

Ht
prop

where |t〉C is the binary representation of t taking log T qubits. If x ∈ L, we have the
history of computation |η〉 = 1

T+1 ∑T
i=1 Ut · · ·U1|χ〉 ⊗ |t〉 where |χ〉 = |x〉 ⊗ |0〉⊗S−n is

the start state encoding the work space including an input x. It is straightforward to check
that 〈η|H|η〉 = 0 if x ∈ L. If x /∈ L, we can show that 〈ψ|H|ψ〉 ≥ 1

4(T+2)3 for all |ψ〉 with a
similar argument used in [3].

The main challenge of encoding a PSPACE Turing Machine comparing to the proof of [3]
is that the number of time steps is possibly exponential in the input length, and the clock
register is polynomial in the input length. Thus, we have exponentially many checking Hamil-
tonians, each acting on polynomial number of qubits. Nevertheless, we are allowed inverse
exponentially small completeness and soundness gap.
Algorithm 9. We give a PreciseQMA protocol, which given a polynomial size proof state,
check the eigenvalue of Hx defined above in polynomial time such that if minψ〈ψ|Hx|ψ〉 =
0, always accepts; otherwise, reject with at least inverse exponential probability. Given |ψ〉,

1. Pick y ∈ [T + n + 1] uniformly at random.

2. Define

Htest(y) =


Hy

prop, y ∈ [T]

Hy−T
in , y ∈ [T + 1, T + n]

Hout, y = T + n + 1

3. If Htest(y) = Hi
in or Htest = Hout, which are projections onto standard basis, measure

ψ, reject if the measurement is in the projected space.

4. If Htest(y) = Ht
prop, note that Ht

prop is also a projection under a rotation

R†
t Ht

propRt =
1
2

I ⊗ (|t〉 − |t− 1〉)(〈t| − 〈t− 1|)

where R = ∑T
t=0 UtUt−1 · · ·U1⊗ |t〉〈t|, so we can also rotate and measure; reject if

the measurement is in the projected space. The total probability of rejection is

≥ 1
T + n + 2

T+n+2

∑
y=1

〈ψ|Htest(y)|ψ〉 =
1

T + n + 2
〈ψ|H|ψ〉 = exp(−poly(n))

Implications: PreciseQMA = PreciseQMA
c=1

Lemma 10. If L is recognized by a family of quantum circuits {Cn} which run
in exponential time and polynomial space in n, then for all x ∈ {0, 1}n, there
exists a Hamiltonian Hx which can be written as a sum of O(exp(n)) Hermitian
PSD matrices each acting on constant number of qubits such that, if x ∈ L,
minψ〈ψ|Hx|ψ〉 = 0, and if x /∈ L, minψ〈ψ|Hx|ψ〉 ≥ exp(−poly(n)).
Proof. Suppose the quantum circuit Cn that acts on S(n) qubits and consists
of T(n) = epoly(n) unitary two-qubit gates, U1, · · · , UT. The idea is to directly
transform the QMA protocol in 9. to a local Hamiltonian. The local Hamiltonian
acts on R(n) + S′(n) + T (n) qubits, where R(n) = log(T + n + 1), S′(n) =
S(n) + log T(n + 1), and T (n) is the maximum number of circuits used in all
different cases in Algorithm 9. We can break down Algorithm 9 into two stages:
generating a random string r ∈ {0, 1}T+n+1 and measuring the state. Given a
random string r, we use Ur

τ to denote the unitary used at time step τ, which acts
on constant number of qubits. We define

Hr
in = Π|−〉r ⊗ I ⊗ |0〉〈0|C

Hout = I ⊗Π|0〉1 ⊗ |T 〉〈T |C
Hr

τ = 1
2|r〉〈r|R⊗

(
I ⊗ |τ〉〈τ|+ I ⊗ |τ − 1〉〈τ − 1| −Ur

τ ⊗ |τ〉〈τ − 1| −Ur
τ

†⊗ |τ − 1〉〈τ|
)

Hx = Hout +
R−1

∑
r=0

(
Hr

in +
T
∑

τ=0
Hr

τ

)
If x ∈ L, the desired proof state will be

1
2R

R−1

∑
r=0

( 1
T + 1

T
∑

τ=0
|r〉 ⊗Ur

τ · · ·Ur
1|η〉 ⊗ |τ〉

)
where again |η〉 = 1

T+1 ∑T
i=1 Ut · · ·U1|χ〉 ⊗ |t〉 and |χ〉 = |x〉 ⊗ |0〉⊗S−n.

Theorem 11. PreciseQMA = PreciseQMAc=1

Proof. For any L ∈ PreciseQMA, by Corollary 5. and Theorem 7., we have a
uniform family of quantum circuits {Cn} that recognizes precisely L which run
in exponential time and polynomial space in n. Then by Lemma 8. and Algo-
rithm 9., we have a QMA protocal for L with perfect completeness and inverse
exponential rejection probability.
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