
COMS 6998, Information Theory in CS

Key Frame Detection of Videos Using DCT and LSH

Yulong Li
yl4095@columbia.edu

This paper focuses on the problem of detecting key frames of a video. For simplicity, we consider
only gray-scale videos, which can be represented by 2D matrices. We approach this problem as a
locality-sensitive hashing (LSH) problem for matrices. For this end, we define a metric for matrices
using discrete cosine transform (DCT) and the Frobenius norm. We prove the proposed metric is
indeed permissible and demonstrate its effects with experiments. We then develop an algorithm
based LSH scheme and this metric and lay out further experimental results.

1 Introduction

Video streaming has become increasingly popular recently. A practically useful task is to find the key
frames of a video, which is a nearest neighbor problem under an appropriate metric. Our goal is to
solve this probelm with sub-linear memory space and near linear update time, without much trade-off
for accuracy. For this paper, we will consider gray-scale videos only, and thus the input of our task can
be considered as a stream of 2-dimensional matrices.

An important component of the problem is the metric d of matrices. Human perception can easily
identify the key frames of a video, or how different two frames are, but an appropriate metric can be
hard to define mathematically. For example, the Frobenius norm between similarly looking frames can
be very large due to small displacements or rotations. Usually, we need some kinds of exaustive search
between two frames to determine wether they are similar or not. However, this can be computationally
expensive. We approach the problem by transforming the frame to its frequency domain via the discrete
cosine transform (DCT) [ANR74], which is less sensitive to small distortions. We demonstrate that the
Frobenius norm after DCT is still a permissible metric. We then use experiments to show that this metric
indeed concord with our intuitive definition of similar frames. DCT also admits a easy lossy compression
scheme by simply dropping coeffcients for the higher-order terms.

We then approach the nearest-neighbor problem by devicing an appropriate family hashing functions
that assigns each matrix to a representative bucket, and keep only one frame for each bucket. Our task
can be thus forumlated as a locality-sensitive hashing (LSH) [IM98] problem:

Given the metric space (Rn×n,d), a threshold r > 0, an approximation factor c > 1, find a function
h : Rn×n→U such that {

Pr[h(A) = h(B)]> p1 d(p,q)< r
Pr[h(A) = h(B)]< p2 d(p,q)> cr

We’d like h to 1) make the gap between p1 and p2 large, 2) have a image consisting of elements with
memory sub-linear in n, and 3) compute fast.

We combine our proposed metric and the LSH scheme proposed by Datar et al. [Dat04] to complete
our algorithm for key frame detection.

2 Key Frame Detection of Videos Using DCT and LSH

2 Preliminaries

2.1 Discrete Cosine Transform (DCT)

The Discrete Cosine Transform (DCT) [ANR74] is similar to the discrete Fourier transform: it transforms
a signal (an image) from the spatial domain to the frequency domain. The set of orthogonal basis for
2-d DCT ordered in terms of increasing frequencies can be visualized as pixels of increasing resolutions
(Figure 1). Each entry of the transformed matrix represents the magnitude of a particular basis. Intu-
itively, higher frequencies terms can be omitted without much loss of the information (comparing to omit
low frequency term). This intuition will be made formal in the sense of Least Square Approximation.
We define the C ∈ Rn×n,

(C)i, j = Λ(i)

√
2
n

cos(
π

2n
(i−1)(2 j−1))

where Λ(i = 0) = 1/
√

2 and Λ(i 6= 0) = 1. One can check that C is a orthornormal matrix, so we can
trasform a matrix X ∈Rn×n to the basis of C with a usual change of basis. This is defined as 2-d DCT of
X :

DCT (X) =CXCT

Note that given a Y ∈Rn×n, which is the result of 2-d DCT of X , we can recover X by a Inverse Discrete
Cosine Transformation (IDCT): IDCT (Y) =CTYC = X . This can also be understood as interpolating X
with a polynomial over 2-variables and using Y as the coefficients:

P(u,v) =CTYC =
1
n
(Y)1,1 + i, j+

2
n

n

∑
i=1

n

∑
i=1

(Y)i, j cos
i(2u+1)

π
cos

j(2v+1)
π

such that P(i, j) = (X)i, j We can define the least square approximation problem as: given a m ∈ [1,n),
find Y to form

Pm(u,v) =
1
n
(Y)1,1 + i, j+

2
n

m

∑
i=1

m

∑
i=1

(Y)i, j cos
i(2u+1)

π
cos

j(2v+1)
π

such that ∑
n
i=1 ∑

n
j=1(Pm(i, j)− (X)i, j)

2 is minimized. It follows from the orthonormality of C that Y =Ym

where Ym is the sub-matrix of Y with first m rows and columns. This gives us a very convenient way to
keep a lossy representation of a matrix X with least information loss: we can simply keep the sub-matrix
Ym in the DCT basis. This proves to work fairly well in the later section.

2.2 Locality-Sensitive Hashing for Vectors

2.2.1 Locality-Sensitive Hashing (LSH)

For low-dimension data, a tree-like space partitioning data structure can efficiently solve the nearest
neighbor problem. However, to find the exact nearest neighbor for higher-dimensional space, we are not
able to improve too much comparing to a naive linear search. Locality-Sensitive Hashing is proposed to
find a approximation of the nearest neighbor, which works pretty well comparing to the exact solution
and enables much more efficient algorithms. The idea of LSH is to use several hash functions such that
near neighbors have much higher probability of collisions.

Yulong Li 3

A locality-sensitive hashing family [IM98] H is a set of functions defined for a metric space (Rd ,d),
two threshold values r > 0,c > 1, such that by choosing a function h : Rd →U in the family uniformly
at random, {

Pr[h(A) = h(B)]> p1 d(p,q)< r
Pr[h(A) = h(B)]< p2 d(p,q)> cr

for some probabilities p1 and p2. Such a family H is called (r,cr, p1, p2)-sensitive. We note that LSH
as the basis is inherently randomized, since a single deterministic hash function may perform badly on
some adversarial distribution. Formally, H is useful when p1 > p2, so that we can amplify the gap by
the following. For some integral parameters k,L, we define a function family G = {g : Rd →Uk} where
g(v) = (h1(v), · · · ,hk(v)), where v ∈ Rd ,hi ∈H . For each input v, we choose L functions g1, · · · ,gL

from G uniformly at random and search all buckets g1(v), · · · ,gL(v). For each u in these buckets, we
check up to 3L points if d(v,u) < cr. In this way, we can ensure the correctness of the algorithm with
high probability. It is proven by Indyk, et al. [IM98] that, given a universe of N elements, by setting
k = log1/p2

N,L = nρ where ρ = 1/p1
1/p2

, the algorithm finds a correct neighbor (or report correctly the point
has no neighbor) with a constant probability. Further, the algorithm uses O(dN+N1+ρ) space and query
time dominated by O(Nρ) distance computations and O(Nρ log1/p2

N) evaluations of hash functions.

2.2.2 LSH for Vectors Based on p-Stable Distributions

Datar, et al. introduced a LSH scheme [DAT04] for (Rd , `p) based on p-stable distributions. As a
reference, a distribution D is p-stable for some p ≥ 0 if for any v1, · · · ,vn ∈ R and i.i.d. variables
X1, · · · ,Xn ∼ D , ∑i viXi has the same distribution as the variable (∑i |vi|p)1/pX , where X ∼ D is a r.v.
with distribution D . It is well known that a Gaussian distribution is a 2-stable distribution.

A p-stable distribution is very convenient for obtaining a sketch or a hash of a high-dimensional
vector by preserving its p-norm. Given a vector v ∈ Rd , generate a random vector a∼Dd , where D is
a p-stable distribution. Then a ·v is a r.v. with distribution ||v||pX where X is a random variable with
distribution D by the definition of a p-stable distribution.

Coming back to the LSH problem, given two points v1,v2 ∈ Rd , we can use the above technique to
get a a · (v1−v2), which is a r.v. with distribution ||v1−v2||pX where again X is a random variable with
a p-stable distribution. This gives us a good idea to develop hash functions for our LSH scheme. Indyk,
et al. defines ha,b(v) = ba·v+b

r c, where a∼ Dd ,b∼U(0,r).
If we have ||v1−v2||p = c, and fp be p.d.f. of the absolute value of the p-stable distribution, then

Pr
a,b
[ha,b(v1) = ha,b(v2)] =

∫ r

0

1
c

fp(
t
c
)(1− t

r
)dt (1)

In this paper, we are most interested about `2, where we will use the Gaussian distribution as our
2-stable distribution, and for a fixed r and c, we can numerically bound the values of p1 and p2, and
hence ρ and bounds for analysis of our algorithm.

3 Metric for Frame Distance

3.1 The Frobenius Norm after DCT Transformation

As a reference, for a matrix A∈Rm×n, the Frobenius norm of A is denoted as ||A||F =(∑m
i ∑

n
j((A)i, j)

2)1/2.
The metric dF induced by the Frobenius norm for two matrices A,B ∈ Rm×n is dF(A,B) = ||A−B||F .

4 Key Frame Detection of Videos Using DCT and LSH

Unfortunately, directly applying this norm onto two matrices representing two images won’t work as
expected. The distance under this metric for very similar images is on a par with the distance of two
dissimilar images. This is because a small displacement or any kinds of variances will cause the im-
ages to be misaligned, and the metric induced by the Frobenius norm only works well when the similar
components are exactly ”aligned”.

The matrix under DCT, however, is much more robust to changes. According to previous discussions
on DCT, we also have the convenient way to shrink the dimension by omitting higher order coefficients,
with out much loss of information. We first define the metric and argue that it is indeed permissible. For
A,B ∈ Rn×n

d(A,B) := ||DCT (A)−DCT (B)||F

It is clear that d(A,A) = 0 and d is symmetric. To show the triangular inequality of d, note that since the
dF satisfies triangular inequality, we have

||DCT (A)−DCT (B)||F ≤ ||DCT (A)−C′||F + ||C′−DCT (B)||F

for all C′ ∈ Rd×d . Since the IDCT is well-defined, we can always find a C = IDCT (C′), so

||DCT (A)−DCT (B)||F ≤ ||DCT (A)−DCT (C)||F + ||DCT (C)−DCT (B)||F

or d(A,B)≤ d(A,C)+d(B,C) for all C ∈ Rn×n.

3.2 Experiments with the Metric

To test the effectiveness of the metric, we pick five frames from a grayscale video. Three frames ((a)-(c))
are from the same shot, while the other two ((e) and (f)) are from two different shots. We show the
distances under dF , under d, and under d but truncating the matrices after DCT to Rlogn×logn. The metric
dF is uninformative, and metric d under truncation works best in terms of enlarging the distance gap.

(a) (b) (c) (d) (e)
(a) 0 28359 32198 46453 32965
(b) 25522 0 28463 46436 32991
(c) 27568 25951 0 46510 32948
(d) 31646 31688 31626 0 33600
(e) 44235 44202 44228 41617 0

Table 1: Distances under dF

(a) (b) (c) (d) (e)
(a) 0 1752 2348 14137 16643
(b) 1752 0 2197 14125 16659
(c) 2348 2197 0 14113 16648
(d) 14137 14125 14113 0 20800
(e) 16643 16659 16648 20800 0

Table 2: Distances under d
(a) (b) (c) (d) (e)

(a) 0 370 509 12225 15562
(b) 370 0 409 12210 15601
(c) 509 409 0 12145 15586
(d) 12225 12210 12145 0 19627
(e) 15562 15601 15586 19627 0

Table 3: Distances under d with truncation

Yulong Li 5

Figure 1 Figure 2(a) Figure 2(b)

Figure 2(c) Figure 2(d) Figure 2(e)

Figure 1. Visualizations of the basis of the 2-d DCT basis ordered in increasing frequencies. Figure 2.
Sample frames. 2(a)-(c) are similar frames from the same shot. 2(d) and (e) are from two different shots.

4 Algorithm for Key Frame Detection

Algorithm 1: Key Frame Detection

Input: r,c approximation parameters, N the number of frames, n the size of a frame;
Calculate p1(r,c), p2(r,c) based on Eqn 1 for Normal distribution, k := log1/p2

N, L := N p2/p1 ;

Initialize a hash-map m that maps from Rk to a set of vectors in Rlog2 n, initialize an empty set S;
for each frame F do

1. D = DCT (F), truncate D to D′ ∈ Rlogn×logn and linearize D’ to v ∈ Rlog2 n;
2. Generate L hashes gi∈[L](v) = (hi1 , · · · ,hik), where hi j∈[k] = b

a·v+b
r c, a∼N (0,1)log2 n, and

b∼U(0,r). Insert v to buckets corresponding to the hashes;
3. Check up to 3L vectors in the buckets corresponding to gi∈[L], if `2(u,v)> cr for each

vector u from the 3L vectors, insert F to S.
end
return F;

With the previously defined metric d, we can formulate the distance between two frames as the

6 Key Frame Detection of Videos Using DCT and LSH

Frobenius norm after DCT (and truncation for space saving). This enables us to apply the LSH scheme
for vectors under `2. The full algorithm is presented at Algorithm 1.

The algorithm uses O(log2(n)N +N1+ρ) space and query time dominated by O(Nρ) distance com-
putations and O(Nρ log1/p2

N) evaluations of hash functions.
We also tested the algorithm on a sample 5-minute gray-scale video with 8439 frames. The unopti-

mized python implementation of the algorithm takes 27.49 seconds of real time computation to extract
64 frames. The video compiled with the 64 frames provides a relatively good summary of the original
video, but it also showcases several problems:

1. The key frames captured are almost always the first frame of a shot, which may not be the best
representation of a shot. The quality of the frame is also rather blurry. We may want to add
additional mechanisms to select a best representation frame among several neighbors.

2. Several similar frames are repeated while others are not captured, which is mostly likely due to the
algorithm’s probabilistic failure and imperfect hyper-parameters.

3. Several key frames to the end are not captured, because they are similar to frames at the beginning.

5 Conclusions

We propose to formulate the problem of detecting key frames of a video under the streaming setting
as a locality-sensitive hashing (LSH) for matrices. For this end, we define a metric for matrices using
discrete cosine transform (DCT) and the Frobenius norm, which works practically for video frames. We
then adapt the LSH scheme for `2 and show some qualitative experimental results. We observe several
flaws of the algorithm based on the experiment as mentioned in the previous section, and future work
may focus on improving on these problems. We may also focus on finding or devising an appropriate
quantitative metric for key frame detection task to evaluate and improve the performance of the algorithm.

6 References

[ANR74] N. Ahmed, T. Natarajan, and K.R. Rao. Discrete Cosine Transform. IEEE Transactions on
Computers, c-23(1): 90-93, Jan. 1974.

[IM98] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse
of dimensionality. Proceedings of the thirtieth annual ACM Symposium on Theory of computing:
604-613, May 1998.

[Dat04] Mayur Datar, et al. Locality-sensitive hashing scheme based on p-stable distributions. Proceed-
ings of the twentieth annual symposium on Computational geometry: 253-262, June 2004.

https://www.youtube.com/watch?v=B9521n3zudc
https://drive.google.com/file/d/1_dvUS6enhtdI9NDaM-JN4VNOj6mUbRtw/view?usp=sharing

	Introduction
	Preliminaries
	Discrete Cosine Transform (DCT)
	Locality-Sensitive Hashing for Vectors
	Locality-Sensitive Hashing (LSH)
	LSH for Vectors Based on p-Stable Distributions

	Metric for Frame Distance
	The Frobenius Norm after DCT Transformation
	Experiments with the Metric

	Algorithm for Key Frame Detection
	Conclusions
	References

